Search results for "Stars: individual: XB 1916-053"

showing 3 items of 3 documents

Signature of the presence of a third body orbiting around XB 1916-053

2015

The ultra-compact dipping source \object{XB 1916-053} has an orbital period of close to 50 min and a companion star with a very low mass (less than 0.1 M$_{\odot}$). The orbital period derivative of the source was estimated to be $1.5(3) \times 10^{-11}$ s/s through analysing the delays associated with the dip arrival times obtained from observations spanning 25 years, from 1978 to 2002. The known orbital period derivative is extremely large and can be explained by invoking an extreme, non-conservative mass transfer rate that is not easily justifiable. We extended the analysed data from 1978 to 2014, by spanning 37 years, to verify whether a larger sample of data can be fitted with a quadra…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsElliptic orbitStar (game theory)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsQuadratic functionQuadratic form (statistics)Astronomy and AstrophysicOrbital periodEphemerideX-rays: binarieStars: neutronNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceStars: individual: XB 1916-053X-rays: starAstrophysics::Earth and Planetary AstrophysicsEccentricity (mathematics)Low MassAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Spectral analysis of the dipping LMXB system XB 1916-053

2019

Context: XB 1916-053 is a low mass X-ray binary system (LMXB) hosting a neutron star (NS) and showing periodic dips. The spectrum of the persistent emission was modeled with a blackbody component having a temperature between 1.31 and 1.67 keV and with a Comptonization component with an electron temperature of 9.4 keV and a photon index $\Gamma$ between 2.5 and 2.9. The presence of absorption features associated with highly ionized elements suggested the presence of partially ionized plasma in the system. Aims: In this work we performed a study of the spectrum of XB 1916-053, which aims to shed light on the nature of the seed photons that contribute to the Comptonization component. Methods: …

stars: individual: XB 1916-053Absorption spectroscopyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)AstrophysicsX-rays: general01 natural sciencesSpectral lineformation identification Line neutron Stars Stars: individual: XB 1916-053 X-rays: binaries X-rays: generalX-rays: binariesstars: neutron0103 physical sciencesBlack-body radiationAbsorption (logic)010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstronomy and AstrophysicsNeutron starAbsorption edgeSpace and Planetary ScienceElectron temperatureline: formationAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]line: identification
researchProduct

Evidence of a non-conservative mass transfer in the ultra-compact X-ray source XB 1916-053

2020

The dipping source XB 1916-053 is a compact binary system with an orbital period of 50 min harboring a neutron star. Using ten new {\it Chandra} observations and one {\it Swift/XRT} observation, we are able to extend the baseline of the orbital ephemeris; this allows us to exclude some models that explain the dip arrival times. The Chandra observations provide a good plasma diagnostic of the ionized absorber and allow us to determine whether it is placed at the outer rim of the accretion disk or closer to the compact object. From the available observations we are able to obtain three new dip arrival times extending the baseline of the orbital ephemeris from 37 to 40 years. From the analysis…

stars: individual: XB 1916-053Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsCompact star01 natural sciencesLuminositystars: neutronX-rays: binariesaccretion0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsaccretion disksApsidal precessionAstronomy and AstrophysicsMass ratioOrbital periodRedshiftNeutron starSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Gravitational redshiftAstronomy & Astrophysics
researchProduct